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Abstract. In this paper, we review briefly Akl and Taylor’s crypto-
graphic solution of multilevel security problem. We propose new key man-
agement systems for multilevel security using various one-way
functions.

1 Introduction

Secret data should be managed for access to authorized people only. In order to
do so, secret keys must be distributed solely to those with access to the pertaining
information. However, this is not a simple problem to solve.

First, let us recall notation and terminology from [1]. Assume that the users of
a computer system are divided into a number of disjoint sets S ={U1, U2, . . . ,Un}.
The term security class (or class, for short) will be used to designate each of the
Ui. The meaning of Ui ≤ Uj in the partially ordered set (S, ≤) is that users in
Ui have a security clearance lower than or equal to those in Uj . Simply put, this
means that users in Uj can have access to information held by (or destined to)
users in Ui, while the opposite is prohibited.

Let xm be a piece of information, or object, that a central authority (CA)
desires to store (or broadcast over) the system. The meaning of the subscript
m is that object x is accessible to users in class Um. The partial order on S
implies that xm is also accessible to users in all classes Ui such that Um ≤ Ui.
It is required to design a system which, in addition to satisfying the above
conditions, ensures that access to the information is as decentralized as possible.
This means that authorized users should be able to retrieve xm independently
as soon as it is stored or broadcast by CA.

This access control problem arises in organizations where a hierarchical struc-
ture exists. Government, the diplomatic corps, and the military are examples of
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such hierarchies. Applications also exist in business and in other areas of the
private sector, for example in the management of databases containing sensitive
information, or in the protection of industrial secrets. Finally, the model is em-
ployed in the design of computer operating systems to control information flow
from one program to another. General references for any undefined terminology
and notion are [5, 6, 10, 13, 14].

In sections 2 and 3, we review briefly Akl and Taylor’s cryptographic solution
of multilevel security problem from [1]. We propose new key management systems
for multilevel security using various one-way functions from section 4 to 7.

2 Cryptographic Solution

Let E (resp., D) be an encryption (resp., a decryption) algorithm of a cryptosys-
tem, such as DES (Data Encryption Standard) or AES (Advanced Encryption
Standard). Then the simplest cryptographic solution to access control problem
may be obtained as follows ([1]). The CA generates n keys {Ki} and distributes
to Ui its own key Ki and all keys Kj belonging to Uj below Ui in the hierarchy.
When an object xm is to be stored (or broadcast), it is first encrypted with Km

to obtain x′ = EKm(xm) and then stored (or broadcast) as the pair [x′, m]. This
guarantees that only users in possession of Km will be able to retrieve xm from
xm = DKm(x′).

As pointed out in [1], this solution has the advantage that only one copy of
xm is stored or broadcast and the operations of encryption and decryption are
performed just once. Its disadvantage is the large number of keys that must be
held by each user. To avoid this problem, Akl and Taylor proposed in [1] a new
scheme to manage keys such a way that a system is used by which Ki can be
feasibly computed from Kj if and only if Ui ≤ Uj .

3 Overview of Known Schemes

In the case where the structure of classes is totally ordered, we can distribute
multilevel security keys using a function H(M) = M2 mod pq as shown in
Fig. 1. Instead of this function, we can also use H(M) = M3 mod pq. In 1982,
applying these functions, Akl and Taylor proposed a cryptographic solution of
key management for multilevel security for any poset. The following is a brief
review of their method.

For any given poset, we add a top class if there is no any. The CA assigns an
integer ti to each class Ui so that Ui ≤ Uj if and only if tj |ti. The CA chooses
a random K, computes Kti mod pq, and then distributes it to each class Ui. If
Ui ≤ Uj , then ti = d · tj for some integer d. Thus a user in Uj can get the key of
Ui by computing (Ktj )d = Ktjd = Kti mod pq. This key management system
(KMS for short) is not secure. For example, as shown in Fig. 2, U3 and U1 can
conspire together to find the (master) key K of the top class. For K9/(K4)2 = K.
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Fig. 1. Key management system for a totally ordered set

1

2 3

U
6

4 6 9

U
5

U
4

U
1

U
2

U
3

1

2 3

U
6

4 6 9

U
5

U
4

U
1

U
2

U
3

Fig. 2. Key management system using RSA - Conspired version
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Fig. 3. Key management system using RSA - Improved version

Thus Akl and Taylor proposed a new method to avoid such a problem. They
suggested a new algorithm for the assignment of ti’s. Each class Ui is assigned
a distinct prime pi and ti =

∏
Uj�Ui

pj . (See Fig. 3.)
In [2], Akl and Taylor proposed a time-versus-storage trade-off for addressing

their key management system. It was shown in [8, 9] that the key generation
algorithm of [2] became inefficient when the number of users was large. As a
result, an improved algorithm can be described and its optimality is shown.
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4 KMS Using a One-Way (Cryptographic) Hash
Function

Since Akl and Taylor’s KMS for multilevel security uses exponentiation, the
overload of computation of keys is high. However, we can compute keys faster
than Akl and Taylor’s method as shown below if we use a one-way hash function.

Once again, if there is no top class, we add a top class. Then the CA assigns
a name to each class as in Fig. 4. Note that, in a lower tree, there is a unique
class, denoted by c(Uk), which covers a class Uk of a lower tree with top class.
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Fig. 4. A lower tree

Now the CA selects a key K belonging to the top class and a one-way hash
function H. The CA computes KUk

= H(Uk, Kc(Uk)) and distributes it together
with H to each class Uk. Then the users in an upper class can compute all keys
belonging to the classes lower than theirs using their keys, hash function H, and
names of lower classes. (See Table 1.) Because of the one-wayness of the hash
function, a user in Uk can not compute others’ keys belonging to upper classes.

Table 1. Distribution of multilevel security keys for a lower tree using a hash function

Class Keys
U1 KU1 = K

U2 KU2 = H(U2, KU1)
U3 KU3 = H(U3, KU1)
U4 KU4 = H(U4, KU2)
U5 KU5 = H(U5, KU2)
U6 KU6 = H(U6, KU3)
U7 KU7 = H(U7, KU3)

5 KMS Using RSA Algorithm

While we can manage multilevel security keys for a lower tree using one-way
hash functions and names of classes, there is no known algorithm of multilevel
security key management for an upper tree. Now we propose a multilevel security
key management for an upper tree using the RSA algorithm [12].
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Table 2. Distribution of multilevel security keys for an upper tree using the RSA

Class Keys
U1 KU1 = K

U2 KU2 = E(fU2(KU1))
U3 KU3 = E(fU3(KU1))
U4 KU4 = E(fU4(KU2))
U5 KU5 = E(fU5(KU2))
U6 KU6 = E(fU6(KU3))
U7 KU7 = E(fU7(KU3))

If there is no bottom class, we add a bottom class. Now, we assign a name
to each class. Since an upper tree is the dual poset of a lower tree, there is a
unique class, denoted by b(Uk), which is covered by a class Uk of an upper tree
with bottom class.

Then, we select two large primes p and q and an encryption parameter e
for the RSA algorithm and compute a decryption parameter d corresponding
to e. Let n = pq and we can define an encryption function E and a decryption
function D as follows:

E(M) = Me mod n D(C) = Cd mod n.
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Fig. 5. An upper tree

Thereafter, the CA selects a key K belonging to the bottom class and a
function fUi , the inverse of which is easy to compute. The CA distributes n, d
and all fUi ’s to each class and computes KUk

= E(fUk
(Kb(Uk))) and distributes

it to the class Uk. Here, the parameters p, q and e are secret to all users. Then
the users in an upper class can compute all keys belonging to the classes lower
than theirs using the decryption function D.

For example, assuming that the keys are distributed (See Table 2) for the
poset in Fig. 5, a user belonging to U7 can get fU7(KU3) from his/her key KU7

using the RSA decryption function D. Furthermore, he/she can easily com-
pute KU3 by finding the inverse of fU7 . Similarly he/she can get KU1 from
KU3 = E(fU3(KU1)). To conclude, any user in class U7 can compute the key
KU3 belonging to class U3 and the key KU1 belonging to class U1.
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6 KMS Using Poset Dimension

In this section, we propose a key management system using poset dimension.
First we recall the notions of dimension and realizer in a poset from [15]. For
any two posets (X, P ) and (X, Q), Q is called an extension of P if P ⊆ Q. In
particular, an extension Q of P is called a linear extension of P if Q is totally
ordered. Let E(P ) be the set of all linear extensions of P . Then it is easy to see
that P =

⋂ E(P ). Now, we define the dimension of any poset P as follows:

dim(X, P ) = min{|Θ| : Θ is a family of linear extension of P, P =
⋂

Θ}.

A family Θ of linear extensions of P is called a realizer if P =
⋂

Θ. It is easy to
see that dim(X, P ) = 1 if and only if (X, P ) is totally ordered.
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Fig. 6. Poset (X, P ) and its linear extensions
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Fig. 7. Key management system using poset dimension

Example 1. Let X = {a, b, c, d} be a set and let P = {(a, a), (b, b), (c, c), (d, d),
(c, a), (d, a), (d, b)} be a partial order on X. Then (X, P ) is a poset and the
number of extensions of P is 14. In particular, the number of linear extensions
of P is 5, as indicated in Fig. 6. Since L4 ∩ L5 = P , Θ = {L4, L5} is a realizer
of (X, P ), and dim(X, P ) = 2 since (X, P ) is not totally ordered.

Let (X, P ) be a poset such that dim(X, P ) = n. Then by the definition of
dimension, there exist realizers {L1, L2, . . . , Ln}. The CA selects two one-way
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hash functions H, G and generates n keys Ki(1 ≤ i ≤ n) to be assigned to the top
class of each Li(1 ≤ i ≤ n), and then in each Li(1 ≤ i ≤ n) keys for multilevel
security are distributed using the hash function H. Then n keys and two hash
functions G, H are assigned to each class of the poset (X, P ). The users in a class
can get the key for multilevel security as the output of the hash function G.

Unfortunately, this key management system is vulnerable to cooperative at-
tacks. However, if a user’s key is stored in a smart card or a PCMCIA card,
there will be no threat against conspiracy attacks, since it can not be read.

7 KMS Using a Clifford Semigroup

In this section, we propose a key management system using a Clifford semigroup.
First we recall the notion of a commutative Clifford semigroup from [16]. A
commutative semigroup S is said to be a Clifford semigroup if S is a semilattice
of groups. For ease of understanding, this condition means: S is a disjoint union
of groups Gλ, λ ∈ Λ, where Λ is a semilattice; if α, β ∈ Λ and β ≤ α, there
exists a homomorphism φα,β : Gα → Gβ ; if x, y ∈ S, the multiplication x.y
in S is defined as follows: If x ∈ Gα, y ∈ Gβ and α ∧ β = inf{α, β}, then
x.y = φα,α∧β(x)φβ,α∧β(y), where the second member is a product in the group
Gα∧β ; φα,β is called a bonding homomorphism.

If S is any commutative semigroup and e is an idempotent of S, the subgroup
Ge generated by e is Ge = {x ∈ S : xe = x and ∃ y ∈ S such that xy = e}.
Let us denote by E the set of idempotents of S; the union of disjoint groups
S0 =

⋃{Ge : e ∈ E} is the maximal Clifford semigroup contained in S. In fact,
the set E is a semilattice with the partial order defined by: e ≤ f if and only if
ef = e; therefore the family {Ge : e ∈ E} inherits the semilattice structure of
E; we write Ge � Gf if Ge is less than or equal to Gf in this partial order; in
this case the bonding homomorphism φf,e : Gf → Ge is given by x 	→ xe.

To give a concrete example, we refer to [4, 7, 11] for some notions and termi-
nologies of ideal theory in number fields.

Example 2. Let R be a non-maximal order of an imaginary quadratic number
field K. We denote by D its integral closure and the index f of R in D as an
abelian group, i.e., f = |D/R|. Assume that f is sufficiently large. Let Cl(R) be
the class semigroup of R. Then by [16–Theorem 11] Cl(R) is a Clifford semigroup
and by [16–Proposition 13] the idempotents of Cl(R) are the equivalent classes
of ideals of the form E = (k, η), where k ∈ Z divides f . Note that any idempo-
tent E which is not equivalent to R is not invertible. If E and F are idempotents
where E ≤ F , then the bonding homomorphism φF,E : GF → GE is defined by
φF,E(K0) = EK0, where K0 is the key ideal. A representation for an ideal is
given in [7], while an efficient algorithm for multiplication of ideals is given in
[3–pp. 113]. Note that the computation of K0 from EK0 seems to be difficult
unless E is equivalent to R. Now, the CA assign an idempotent Ei to each class
Ui. For example, we consider the diagram in Fig. 4. The CA selects a random key
K0 and computes E2K0, E3K0 and distributes each of them to each class U2, U3.
The CA computes E2E4K0 and distributes it to U4. Similarly the CA computes
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keys of all classes and distributes each of them respectively. Then the users in
an upper class can compute all keys belonging to classes lower than itself.

8 Conclusion and Further Study

In this paper, we proposed new key management systems for multilevel secu-
rity using various one-way functions and mathematical notions. In particular,
we proposed a key management system for multilevel security for an upper tree
structure using RSA. In section 7, we also proposed a KMS for multilevel security
using poset dimension. However, this system can be vulnerable to cooperative
attacks. Thus, it will take further work to solve this problem. In the final section,
we proposed a KMS for multilevel security using a Clifford semigroup. Neverthe-
less, parameter sizes need to be considered for precise and efficient performance
of our systems, which aim to provide practical security.
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